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performance over the 3,7-4 .2-GHz band. The conditions

must be satisfied for a perfect match are

(~ sin2 ~ (1 + A) + COS2~
Y2

(
~sin2~(l +A)+cos2~(l+A)

1

)+A)G==l

B(G)A

which

(1=sin~(l+A)cos~(. +A) $–Y (12)

where Y is the transformer admittance level, G is the equivalent

conductance, B(G) is the susceptance slope parameter, and

A = (co – COO)/OJOwith COObeing the circulator center frequency

and co the frequency for which the device should be matched.

These conditions are obtained from (6) and (7) if the ABCD

matrix elements of a single-step transformer are substituted.

Notice that these equations remain unchanged if A is replaced

by – A. This means that there will be two frequencies of perfect

match symmetrically located about the center frequency. If we

choose A = 0.0447 so as to have optimum performance over the

3.7-4.2 band, then (12) constitutes two equations in two un-

knowns Y and G, The dependence of B upon G introduces a

complication in their solution. In practice, they were solved by

assuming values for B and then solving for Y and G until the

value of B obtained from the curve of Fig. 4 for the calculated

value of G agreed with assumed value. The result for A = 0,0447

was B = 6.3, Y = 1.805, and G = 3.217. The theoretical

VSWR is less than 1.01 over the band, which obviously will not

be obtainable in practice because of irreproduciblle connector

mismatches. Transformer dielectrics with a dielectric constant

giving an admittance level close to 1.80 were now inserted in

each arm of the circulator. The resulting device had a per-

formance better than 30 dB over the 3,7-4,2 band,

V. CONCLUSIONS

The equivalent or complex gyrator admittance of a standard

stripline circulator junction has been measured with a com-

puterized measurement system as a function of frequency and

magnetic field. The results confirm that this admittance is that of

a shunt resonator close to the first dielectric resonant frequency

of the garnet disks. Several interesting features did emerge. The

conductance initially increases linearly with magnetic field but

then begins to saturate approaching a saturation value of 3.25.

The susceptance slope parameter B of the resonator is a function

of the magnetic field and decreases in the region where the

conductance is saturating. The data were used to determine the

matching transformer required to build a device witlh better than

30 dB return loss over the 3.7-4 .2-GHz band.
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Dimensions of Microstrip Coupled Lines and

Interdigital Structures

THOMAS A. MILLIGAN, MEMBER, IF,EE

Abstract—A method is presented for finding dimensions of coupled
lines and interdigital structures on microstrip given the electrical prop-
erties. Both a graphical approach and computer approach using poly-

nomial approximations are given. These results are within 1 percent of
Bryant and Weiss’ dimensions for coupled lines for most practical

stripwidths and spacings. Experimental data for a 10-percent bandwidth
microstrip interdigital filter are given,

I. INTRODUCTION

The design of microwave filters and couplers on microstrip

requires data on coupled lines and interdigital structures. The

design of these structures has been done using tables or graphs

generated from the work of Bryant and Weiss [1], Smith [2], or

others. Until now there has been no method of designing

microstrip interdigitai structures. All of these methods start with

dimensions and end with the electrical properties of the structure.

This short paper gives a method of obtaining dimensions of the

lines from the self and mutual capacitances. The method is

presented in both a graphical form and polynomial approx-

imations which can be programmed, Coupled lines with unequal

linewidths and interdigital structures can be approximated.

The curves obtained here follow the same idea as Cristal’s [5]

method for coupled rods between ground planes. Cristal derived

the curves by analyzing a periodic structure of equal rods and

devised an approximation method to find interdigital structure

dimensions with these curves. The same idea can be extended

to microstrip with a few minor changes. It should be pointed out

that this method can find stripwidths and spacings, but it does

not handle the problem of finding the velocity of the waves on

the lines. For N lines in an inhomogeneous structure such as

microstrip, there are N possible ttormal modes with, in general,

N different velocities. Interdigital and combline filters do not fit

the normal modes, and it is a problem determining the proper

length to make the lines. The proper resonator length of even

the simpler coupled line filters is difficult to determine, The

method was tried experimentally on a five-section interdigital

filter and shows usable results even though the filter deviates

from the theoretical response. Section II covers the derivation

and use of the curves, Section III gives polynomial approx-
imations of the curves and explains their use, and Section IV

reports on an experimental filter.

Manuscript received October 13, 1975; revised August 23, 1976.
The author is with the Aerospace Division, Martin Marietta Corporation,

Denver, CO 80201.
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Fig. 1. Mutual and self-capacitances of periodic array of interdigitated

microstrip conductors.

II. DERIVATION OF THE CURVES

To analyze the coupled line structure on microstrip, a periodic

structure of strips was assumed, as shown in Fig. 1. The param-

eters of this structure were analyzed by defining normalized

capacitances per unit length and calculated by modifying the

computer program MSTRIP of Bryant and Weiss [1].

The normalized capacitances of a pair of coupled lines with

equal widths are defined as

Coe = 50/zoe coo = 501Z00 (I)

where ZO, and ZOOare the even and odd mode impedances of the

coupled pair of lines. This is identical to the normalization of

Wenzel [3] for interdigital structures. The normalized capac-

itances are related to the normalization of Getsinger [4] for inter-

digital structures by

c/&. = 7.534 Cno,m ,(2)

for a 50-Q system, where CnO,~ is the normalization of Wenzel

and C/&O is the normalization of Getsinger.

For a pair of equal width coupled lines, these normalized

capacitances can be subdivided

Coe=cp+cf+cfe Coo= cp+cf+cfo (3)

where CP is the parallel plate capacitance, Cf is the fringing

capacitance on the uncoupled side, and Cxe and CfO are the

coupled even and odd mode fringing capacitances, respectively.

The periodic structure can be described by Cg, the self-capac-

itance, and C=, the mutual capacitance. These are related to the

parallel plate capacitance and fringing capacitances by

c, = c, i- 2cfe cc = (Cfo – cfe)/2. (4)

The normalized capacitance of an uncoupled strip can also be

subdivided

co = c, + 2cf (5)

where CP is the parallel plate capacitance and Cf is the fringing

capacitance on one side of the strip.

The self-capacitance and mutual capacitance of the periodic

structure was found by analyzing a pair of equal width coupled

lines and an uncoupled strip of the same width. Combining (3)

and (5), the self and mutual capacitances of the periodic structure

are related to these by

Cg = 2coe – co cc = (coo – toe)/2 (6)

where CO is the normalized capacitance of the uncoupled strip.

The program MSTRIP was modified to prepare the data.

WIH was held constant and SIH increased exponentially to stress

smaller values of S/H in the polynomial approximations. Figs. 2

and 3 present the data graphically for a dielectric constant of 9.6

which is identical in form to Cristal’s [5] graphs for round rods

between parallel ground planes. The procedure to use these
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TABLE I
SELF-CAPACITANCEFORUNCOUPLED MICROSTRIP

DIELECTRIC CONSTANTOF 9.6

W/H SJC2

3.0 .9510

2.5 .%09

2.0 .7293

1.6 .6386

1.2 .5456

1.0 J!979

.8 .4494

.6 .3969

.14 .339$

.3 .3078

.2 .2713

.1 .2245

TABLE 11
DESIGN TABLE OF TRIAL FILTER

Abscissa Value
Ck’ ‘+1

.0846
Col

.0889
Col

.9251
h

.9488
C12

1.2209
C23

C231.2217

C34

Therefore,

Sol/H = .0846 + .0889 = .1735 = S56/H

S12JH = .9251 + .9488 = 1.8739 = S45/H

S23/H = 1.2209 + 1.2217 = 2.4426 = S34/H

TABLE III
RENORMALIZEDCAPACITANCESFORA 10-PERCENTBANDWIDTH

INTERDIGITAL FILTER DESIGN WITH N = 5 RESONATORS

K c
k, k+l K

Ck

O and 5 .265 0 and 6 .735

1 and 4 .0643 1 and 5 .770

2 and 3 .0490 2 and 4 . !118

3 .932
—

charts is the same as Cristal’s charts for finding the dimensions of

coupled lines and interdigital structures with one exception: The

coupling in microstrip falls off so slowly that it is necessary to

give d,/2 for the uncoupled strip in Table I to be used instead

of the end of the graph (Fig. 3) as is done by Cristal for the case

of a strip coupled on one side.

The design of the trial filter on Teflon-Fiberglas is presented

in Table II to illustrate the proper use of the graphs. Table 111

gives renormalized capacitances for the interdigital filter, which

were obtained by dividing both the self and mutual ,capacitances

obtained by the Matthaei [6] procedure by 7.534. The discussion

TABLE IV
INTERDIGITAL FILTER WITH 10-PERCENT BANDWIDTH AND

O.1-dB RIPPLE ON A 26-MIL SUBSTRATEOF DIELECTRIC CONSTANT2.4

K
Ck’

k+l SPACING K
Ck

LINE WIDTH

O and 5 .265 4.5 0 and 6 .735 63.5

1 and 4 .0643 48.7 1 and 5 .770 75

2 and 3 .0490 63.5 2 and 4 .918 7~.8

3 .932 79.9

of how to use the graphs will not be presented again here; see

Cristal for a thorough explanation,

Table IV is a summary of the dimensions obtained for the trial

filter. The procedure given by Matthaei [6] must be modified by

adjusting the impedance level of the interior to 50 Q instead of

70 Q for coax construction. If this is not done, the interior lines

will be thin and excessively Iossy. This maybe done by increasing

the dimensionless parameter H.

111. POLYNOMIAL APPROXIMATIONS

So that this procedure could be programmed on a computer,

polynomial approximations were developed for each of the

curves on the graphs. These polynomials approximate the data

in the Chebyshev sense, that is, the maximum error is minimized.

The first set of approximations is

S/(2H) = ~ Ai (ln (CC)) (i- 1) (7)
1=1

for each W/H where CC is the mutual capacitance and S/(2H) k

one-half the edge spacing divided by the substrate thickness. The

second set is

CG/2 = ~ 13,(S/(2H))(i -l)
1=1

(8)

for each W/H. The coefficients At and Bi are given in Table V for

a dielectric constant of 9.6. Table VI gives the set of coefficients

for a dielectric constant of 2.40. For a dielectric constant of 2.4,

it is sufficient to use a fourth-order approximation, The approx-

imations are better in most cases than the curves and can be used

to regenerate the curves if desired, but they are much more useful

in a computer program. Table VII is a list of the CG/2 for various

stripwidths to be used with uncoupled strips on a substrate of a

dielectric constant of 2.40.

The polynomial approximations have been incorporated in a

computer program to design interdigital structures and coupled

lines. For each normalized mutual capacitance a set of points

( W/H, S/(2H)) k found using coefficients A. Then for each

( W/H, S/(2 H)) the half-normalized self-capacitance is found

using coefficients B. Starting with the first strip, the CG/2 for

each (W/H, S’/(2H)) corresponding to the first mutual capac-

itance is added to the corresponding CG/2 in Table 1, self-

capacitance of uncoupled strips. Quadratic interpolation is used

to match the CG for the required self-capacitance giving the

width of the first strip. The same quadratic interpolation routine

is then applied to the set of numbers (W/H, S/(2H)) to get

S/(2H). Linear interpolation would be sufficient between the

various W/H, but quadratic interpolation is recommended for the

second interpolation.

For the second strip in an interdigital structure the poly-

nomial approximations are applied to the second mutual

capacitance, and again a set of points (CG/2, W/H, S/(2H)) is

found. These new CG/2 are added to the CG/2 obtained from the
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TABLE V
POLYNOMIAL APPROXIMATION COEFFICIENTS FOR DIELECTRIC CONSTANT OF 9.6

DIE LECTRI C CONSTANT * 9.6

COEFFICIENTS A

ALE3G( CC) TO S/( Z*H)

W/H COEFFICIENTS

2*OO .?1E04DE-01
2.50 .33251 OE-O1
2.00 .339473 E-01

1.60 0?6D997 E-01
1.20 .376814 E-01
1.00 .387925E-01

.80 .405297 E-01
.60 .435612E-01
.40 .500234E-01
.30 .564917E-01

.20 .687 ?&E-01
.10 .1 OO156E*OO

COEFFICIENTS B

S/(2*H) TC CG/2

2

.202539 E+O0
.188761 E+OO
.172477E+O0
.1 65 E26E+O0
.156437E+OC
.1 52 tJ32E+O0
.150355E +00
.1507413E+CC
.157264 E+O0
.165318E+O0
.1 S0409E*O0
.215192 E*OC

3

.434785 E+O0
.401 O58E+OO
.363217E+O0
.339676 E+D0
. 309918E+O0
.293476 E+O0
.275435E+O0
.2~~333E+oo

.227842E+D0

.210863E+OO

.189245 E+O0
.159328 E+O0

n Ill

3.00
2.50
2.00
1.60
1.20
1.00

.80

.60
.40
.30
.20
.10

CUE FFIC 1EN7S 2 3

.654978E+O0 .426432 E+O0 -.323791 E+O0

.550681E+O0 .431572E+O0 -.331965 E+o0
.445972E+O0 .437847E+O0 -.343257E+O0
.361855E+O0 .443855 F+O0 -.355445E+O0

.277600E+O0 .449581E+O0 -.369981 E+O0
,2:553 [+oo .451 F33E+O0 -.378118E+O0

.192684E+O0 .454363 E+O0 -.3891124E+O0

.151895E+O0 .457083 E+O0 -.409075E+O0

.112238E+O0 .458513E+O0 -.440662E+O0

.931 Z51E-01 .45s345 E*OO ‘.465531 E+O0
.748251 E-01 .4564 EJ3E+O0 -.501217E+O0
.584293E-01 .445961 E+O0 -.549677E+O0

4 5 6

.147609 E+O0 .351423 E-01 .2 17799E-02
.1213244E+O0 .284548E-D1 .157045E-02
.107561 E+OO
.957182E-01
.810593E-O1
.730955E-01
.643457E-01
.539728 E-01
.406919E-01

.320975E-01

.211761E -01

.605381 E-02

.217437 E-01

.178383E_D1
.134787 E-O;
.112628E-01
.895724E-02
.640606E-02
.340521 E-02
.161082 E-O2

-.512501 E-03
-.318002 E-02

.992756E-03

.692475E-O?

.376021 E-03
.226996E-03
.EI10432E-O4

-.705746E-04
-.235281 E-03
-.326128E-03

-.4 .?4799E-O?
-.530562 E-03

4 5

.137691 E+O0 -.305920E-01

.142023E+O0 -.316700E-01

.148846E*O0 -.336221E-01

.156621 E+O0 -.358797E-01

.166576E+O0 -.389279 E-01

.172349E+O0 -.406687E-01
.1 E11389E+O0 -.435527 E-01
.197957E+O0 -.492102E-O1
.228342 E+O0 -.602853E-01
.253728E*O0 -.698214E-01
.29 1795E*O0 -.844154E-01
.349206E+O0 -.107329E+OO

6

.275145E-02

.28561 OE-O2

.307455E-02
.332358E-02

.367738E-02
.387 187 E-02
.420715E-02
.489621 E-02

.530744 E-02

.754537E-02
.9463 12E-02

.125438E-01

first mutual capacitance for each W/H. The width of the second

strip is obtained by interpolating this sum.

Using the first set (W/H, S/(2H)) and the second stripwidth,

another S/(2H) is found through interpolation. The sum of this

S/(2H) and the one interpolated from the set (W/H, S/(2H)) of

the first mutual capacitance, i.e., between the first and second

strips, is the edge spacing S/H between the first two strips. The

S/(2H) for the second spacing is interpolated from the second

set (W/H, S/(2H)) using the second stripwidth. This procedure

is continued through all the strips with the last strip handled the

same as the first.

The accuracy of the approximations was checked by comparing

the dimensions given by the program for coupled pairs of lines

and the charts of Bryant and Weiss. The region 0.1 < S/H < 4.0

and 0.1 < W/H < 2 was checked. Over this region the maximum

percent difference in the dimensions was 3.3 percent for S/H, but

for most of the region the percent difference was less than 1

percent. The error rose for small values of S/H and W/H. For

W/H = 0.2 the error in W/H was less than 2 percent. The

approximations for W/H degraded for large spacings and small

W/H. But even for W/H = 0.1 and S/H = 4, the error is only

10 percent which is of the same order as the tolerance on etching

such narrow lines in thin films, For most practical problems this

procedure of approximations gives results as accurate as the

Bryant and Weiss data.

IV. TRIAL FILTER

The procedure will give reasonably accurate spacings and

stripwidths for interdigital structures, but there are still problems

which could not be answered easily analytically. The coupling

between microstrip lines falls off quite slowly compared with

stripline or rods between two ground planes, so that coupling

between nonadjacent strips will exist. This coupling between

nonadjacent strips is not accounted for in the equivalent circuits

of the interdigital or combline filter. The second major problem

is the electrical length of the resonators. The equivalent circuit

of neither the interdigital nor the combline filter accurately takes

care of the effect of the different velocities caused in the N-wire

structure in an inhomogeneous medium. These problems cast

serious doubts on the possibility of realizing interdigitated

filters on microstrip.

To check the possibility of making interdigital filters on

microstrip, a test filter was designed and fabricated on a 26-roil

Teflon-Fiberglas substrate. The filter fabricated compares

favorably with half-wave parallel coupled line bandpass filters

realized on microstrip. The test filter is a five-section 10-percent

bandwidth O.1-dB ripple centered in the upper S band. In a

two-wire interdigital structure, the stubs in the equivalent circuit

are related to the even mode impedance only. The lines were all

nearly the same width and the even mode velocity of a two-line

coupled pair does not depend strongly on the spacing, so the

same length was picked for all of them. The center frequency was

close and only the middle resonator had to be shortened a little

to give good return loss in the passband. Fig. 4 is a plot of the

measured results of the test filter. This plot is similar to the

curves for coupled line bandpass filters on microstrip. Both have

low maximum rejection of about 40 dB. The only successful

method to realize greater rejection is to build two filters and

separate the two into closed boxes. The unloaded Q was

originally estimated to be about 300 but it appears 200 is a

closer value for this substrate. Even though the shape of the

rejection bands does not follow the theoretical curve, the filter is

useful because it has a flat response and good return loss in the

passband.
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TABLE VI
POLYNOMIAL APPROXIMATION COEFFICIENTS FOR DIELECTRIC CONSTANT OF 2.4

COUPLED 141CROSTRIP

DIELECTRIC CONSTANT = 2.4

COEFFICIENTS A

II/H CO EFFIC IENTS 2 3 4 5

4.00 .143252E+O0 .490689E+O0 .427396 E+G0 .814121 E-01
3.50

.128268E-01
.158 I31OE+OO .506215E+O0 .432766E+O0 .833286E-01

3.00 .173525E+O0 .518919E+O0
.1 ZZ890E-01

.435330 E+03 .l145016E-01 .116856E-01
2.50 .186458E+O0 .5 Z674ZE+O0 .433486E+O0 .84509 5E-01
2.00

.109755 E-O1
.198616E+O0 .530962E+O0 .4z7597t +00 .834237E-01 .101688E-O1

1.60 .199696 E+O0 .516954E+O0 .410313E+OO .792974 E-01 .9 Z2690E-01
1.20 . Z01435E+O0 .501573E+O0 .389686 E+O0 .74311 BE-01

1.00
.821 Z9ZE-02

.Z03911E+O0 .495 054E +00 . 378376E+ 00 .715167E -01 .767834E-02
.80 .20$630E+O0 .49 Z114E+OC .367068E+O0 .685917 E-01
.60

.712400E-02
.Z22048E+O0 .496641E+O0 .356 Z45E+O0

.40
.654790E-01 .653 Z93E-OZ

.Z49698E+O0 .51741 OE+OO .346827E+O0 .620306E-01
.20

.586970E-OZ
.330722E+O0 .594 Z41E+O0 .34778 BE+O0 .591291E-01 .513116E-OZ

COEFFICIENTS B

id/H

4.00
3.50
3.00

2.50
2.00

1.60
1.20

1.00
.80

.60
.40
.20

COEFFICIENTS

.437352E+O0

.385396E+O0
.333328E+O0

.Z8111OE+OO
.ZZ8678E+O0

. 186540E+O0

. 144230E+O0

.123056 E+O0

. 101955E+OO

.81 OO6OE-O1

.60481 6E-01
.407921 E-01

z 3

.Z03505E+O0 -.11905 ZE+O0
.205 Z73E+O0 -.121393E+O0
.207245E+O0 -.124 Z03E+O0
.Z0969ZE+O0 -. IZ7661E+O0

.21 Z104E+OC -.13 Z075E+O0
.214498E+O0 -.136605E+O0

.21701 OE+OO -.14 Z431E+O0

.218163E+O0 ‘.146057E+O0
.21931 ZE+O0 -.150891 E+O0

.218993E+O0 -.155371 E+O0

.217430E+O0 -.16 Z105E+OO

.211099E*OO -.171807E+O0

4 5

.348614 E-01. -.39758 O02O2

.357162E -01 -.408 Z83E-OZ

.367771 E-01

.381335E-01

.399346 E-01
.418653E-01
.445058E-01

.46259 ZE-01
.487509 E-01

.51 Z868E-01
.554877E-01
.626854 E-01

-.421868E-02
-.439646 E-OZ

-.463870E-02
-.490534E-02

-.528401 E-OZ

‘.554472 E-02
-.59 Z961E-OZ
-.633331E-OZ
-.703428 E-OZ
‘.831606E-OZ
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Fig. 4. Frequency response oftrial filter.

The design bandwidth of the trial filter was 10 percent but the response only has two. The stopband’s attenuation does not

bandwidth of the filter, measured on a return loss basis, is only correspond with theory at all. In the author’s experience, half-

6.2 percent at the 1.35 VSWR (O. l-dB ripple) poinfi. The band- wave parallel coupled line bandpass filters also exhibit similar

width of the filter measures 8.4 percent based on the 3-dB deviations from theory when fabricated on microstrip.

bandwidth and referenced back to the O.l-dB points. Also for a The interdigital filter is superior to the half-wave parallel

five-section filter there should be five points of maltch, but the coupled line bandpass filter on microstrip because the interdigital
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TABLE VII
SELF-CAPACITANCES FOR UNCOUPLED MICROSTRIP DIELECTRIC CON-

STANT OF 2.4

W/H CG/2

4.0 .6u7

3*W .55%

3.0 .940

2.5 .4477

2.0 .39X

1.6 .3436

1.2 .295L

1.0 .2’705

.8 .2446

.6 .2173

.4 .1s7’4

.2 .1514

microstrip filter does not have a spurious second harmonic

response, and it takes up less space at the expense of shorts

through the substrate. Microstrip filters are not viable by

themselves because they have poor ultimate rejection, high loss,

and do not follow the theoretical curves; but it is sometimes

convenient and economicalto use them.

V. CONCLUSION

In conclusion, a procedure is given which can be used to

design coupled line and interdigital structures on microstrip.

The procedure can be easily computer programmed using the

polynomial approximations to give accurate results with very

short computation times compared with times required by the

Bryant and Weiss method or even Smith’s approximations. Most

importantly, since this procedure leads from electrical parameters

to dimensions, it can be incorporated in automatic design

programs.
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INTRODUCTION

The writer [1] has recently given a closed expression for the

odd-mode fringing capacitance for an infinite rectangular bar,

asymmetrically located in an infinite u-shaped outer conductor.

The essential problem solved in that note was the determination

of the conformal transformation which maps the upper half t

plane into the doubly infinite u-shaped polygon in the z plane

as shown in Fig. 1. The determination of the capacitance of the

structure presented no problem since it could be found from

well-known formulas with the help of the “excess capacitance”

introduced by Riblet [2].

If the even-mode capacitance is defined in a manner consistent

with that used by Getsinger [3], as the capacitance of the

structure in the z plane when the line segment BC is a magnetic

wall, then we require in the tplane the capacitance of two sep-

arated line segments, AB and CD, both at the same potential,

with respect to the infinite line segment DA. The determination

of the limiting value of this capacitance is the essential problem

of this short paper.

THE EVEN-MODE CAPACITANCE

In the tplane, the capacitance between the two-line segments,

[,u + C$A,1] and [l/k’, v – 6v] maintained at the same po-
tential, and the infinite line segment [v + dv, L – @] is required

in the limit as dy and h -+ O. It is important to keep in mind

that the small semicircles about A and D are magnetic walls,

while the semicircles about O, B, C, and E play no essential role

in the calculations. This capacitance is not altered if the upper

half of the t plane is mapped onto the upper half of thes plane

so that B maps into – 1, C into +1, A into – 1, and D into + [.

This is accomplished by the linear transformation

t–u
s.y —

t–b

if a, D, and y are selected so that

I/kz – a I–a=l

‘1/k2–/3=-y l-~

and

(1)

(2)

(3)

Again it is important that the semicircles about – 1and + 1and

the line segment between B and C be magnetic walls. From (2)

and (3)

2a/1 – (1 + l/k2)(a + ~) + 2/k2 = O
(4)

2a/? – (p + V)(a + p) + 2#v = o.

Whenever p + y # 1 + l/k2, this set of equations can be

solved uniquely for a~ and a + ~. It is then a simple matter to

solve the quadratic equation

to determine u and ~. Gamma is then found from either (2) or (3).

The total capacitance of the system is unchanged by the trans-

formation, and, if we take the radii of the semicircles about

A and D in the s plane to be the same, the geometry and the

lines of force in thes plane are completely symmetrical about the

imaginary axis. Thus it may be replaced by a magnetic wall.

Then one-half of the limiting value of the total capacitance of

the system is given by the limiting value of the capacitance of

the finite line segment, [1, 1 – c$s], with respect to the infinite


